D1939. La saga orthocentrique (3ème épisode) Imprimer
D1.Géométrie plane : triangles et cercles
calculator_edit.png  

Problème proposé par Dominique Roux
On donne trois points A,B et C dans le plan et pour tout point M on construit les orthocentres A', B', C' des triangles respectifs MBC, MCA, MAB.
Montrer que lorsque M se déplace dans le plan, le triangle A'B'C' a une aire constante.


 Solution


Maurice Bauval et Patrick Gordon ont résolu le problème.