Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
A1707. La tache d'encre |
A. Arithmetique et algèbre - A1. Pot pourri |
Diophante a reçu d’un lecteur fidèle un problème d’arithmétique destiné à être diffusé sur le site diophante.fr mais une tache d’encre a rendu illisible l’une des principales données de l’énoncé :
« Trouver six entiers positifs a,b,c,d,e,f tels que ppcm(a,b,c) = 60, ppcm(b,c,d) = 540, ppm(c,d,e) = 135, ppcm(d,e,f) = 5454, ppcm(e,f,a) = 1212, ppcm(f,a,b) = avec ppcm(x,y,z) qui désigne le plus petit commun multiple des entiers x,y et z ». Ce lecteur a précisé dans son courriel que les six entiers sont distincts et que le problème (avant la tache,donc) a une solution unique. Démontrer que malgré la tache, on sait calculer le nombre caché et les six entiers (a,b,c,d,e,f). |