Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
A1745. Le calendrier circulaire |
A. Arithmetique et algèbre - A1. Pot pourri |
Le 1er janvier dernier, Zig a fabriqué un calendrier circulaire selon la maquette ci-contre. Tous les jours de l’année 2021 sont inscrits dans des cases adjacentes selon l’ordre chronologique et dans chacune d’elles Zig a écrit un nombre premier de sorte que la somme des nombres écrits sur une période glissante de 35 jours est toujours égale à 553 quelle que soit la case de départ.
Dans la case du 30 novembre, Zig a écrit le nombre 29 et les nombres écrits dans les cases des 31 janvier, 31 juillet, 30 septembre, 30 novembre et 31 décembre forment une suite strictement croissante. Déterminer les nombres écrits par Zig le jour de Pâques (4 avril), le jour de la Pentecôte (24 mai), le 14 juillet, le 15 août, le jour de la Fête des Morts (2 novembre) et le jour de la Saint Nicolas (6 décembre). |