Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A1781. Collections de nombres premiers Imprimer Envoyer
A. Arithmetique et algèbre - A1. Pot pourri

calculator_edit.png  

Pour tout entier k > 0 fixé à l’avance, on s’intéresse aux collections de nombres premiers (pas nécessairement distincts) qui ont la propriété (Pk) suivante : le produit de leurs termes vaut k fois leur somme.
Q1 Trouver une collection qui contient au moins cinq nombres premiers distincts et possède la propriété Pk avec l’entier k le plus petit possible.
Q2 Prouver qu’il existe une seule collection qui a la propriété P10.
Q3 Déterminer toutes les collections qui ont la propriété P44.
Q4 [avec l’aide éventuelle d’un automate] : Existe-t-il un entier k tel que l’on sait trouver quatre collections différentes de nombres premiers pas nécessairement distincts dont le produit des termes vaut k fois la somme ? Même question avec cinq collections distinctes.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional