Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
A359. Quod abundat non vitat (a) |
A3. Nombres remarquables |
Par convention, le degré d’abondance d(n) d’un entier naturel n > 0 est égal au rapport σ(n) / n où σ(n) désigne la somme des diviseurs de n , y compris 1 et n.
Q1 Déterminez les plus petits entiers dont les degrés d’abondance sont respectivement ≥ 2, 3, 4 et 5. Justifiez votre réponse. Q2 Un entier k > 1 étant fixé à l’avance, prouvez qu’on sait toujours trouver au moins un entier (pas nécessairement le plus petit) tel que son degré d’abondance est au moins égal à k. Q3 Un entier n > 1 étant fixé à l’avance, prouvez qu’on sait toujours trouver une suite S strictement croissante de n entiers positifs telle que la suite S’ constituée par la somme des diviseurs de chacun des n termes de S est strictement décroissante. (a) Abondance de biens ne nuit pas. |