Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A4901. Jeux de bascule Imprimer Envoyer
A4. Equations diophantiennes

calculator_edit.png computer.png  

Q1 Zig écrit une suite croissante S1 de n entiers consécutifs strictement positifs qui contient exactement un carré parfait. Il met le signe "+" devant ce carré et tous les entiers qui le précédent et le signe "−" devant tous les autres entiers. Il constate que la somme de tous les termes est nulle. Déterminer la plus petite valeur possible de n ainsi que les termes correspondants de la suite S1.
Q2 Il écrit ensuite sur une même ligne la suite croissante S2 des n entiers naturels consécutifs en partant de l'entier 1 auquel il affecte le signe "+" puis il place devant  chaque entier le même signe ("+ ou "−") que celui de l'entier précédent avec la seule particularité de changer de signe après l'écriture d'un carré parfait. Les premiers termes de S2 sont alors : + 1, −2, − 3, − 4, + 5, + 6, + 7, + 8, + 9, − 10, − 11, etc....Il calcule en même temps sur une deuxième ligne le cumul C(n) des entiers relatifs qu'il a écrits : + 1, − 1, − 4, − 8, − 3, + 3 , + 10 etc.....
 a) n est un carré parfait, n = p2. Déterminer la valeur de C(n) en fonction de p. Application numérique: p = 2018 puis p = 2019.
 b) Zig arrête ses calculs quand il observe que le cumul C(n) est égal à + 76971 pour la première fois. Déterminer la valeur de n.
 c) Pour les plus courageux disposant d'un automate
Déterminer les valeurs de n, de p et de q (q > p > 0) telles que Zig observe pour la première fois C(n) = C(n + p) = C(n + q) > 0.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional