Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Â
Â
Â
Â
Â
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
A533. Cubes en tous genres, petits et grands |
A5. Carrés, cubes, puissances d'ordre n |
P1 : Trouver tous les couples d'entiers naturels (n, a) avec a qui peut prendre l'une des valeurs 2,3,4,5,6,7 et 9 tels que n! + a est un cube [Nota : n! désigne la factorielle de n]. P2 : Quel est le plus petit entier naturel dont le cube se termine par 7 chiffres identiques ? Existe-t-il un entier dont le cube se termine par 2009 chiffres identiques ? P3 : On considère une suite de nombres réels telle que pour tout entier n, la somme des cubes des n premiers termes est égale au carré de leur somme. En déduire que pour tout n, la somme des n premiers termes est un nombre triangulaire
|