Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A523. En quatrième vitesse Imprimer Envoyer
A5. Carrés, cubes, puissances d'ordre n

calculator_edit.png  

Q1 - Passage en première...
Zig, Puce et Alfred (le pingouin)  détiennent chacun un entier relatif. La somme des trois nombres est nulle. Démontrer que le double de la somme de leurs puissances quatrièmes est un carré parfait

Q2 - Passage en seconde...
Zig dit à Puce: “la somme des puissances quatrièmes des entiers qui vont de 1 à l’âge de mon grand’père rapportée à la somme des carrés de ces mêmes entiers est égale au carré de l’âge de ma grand’mère”. Déterminer les âges des grands-parents de Zig.

Q3 - Passage en troisième...
Pour l’entier k prenant les valeurs 1,2,3,...,Zig établit la suite des nombres égaux à la puissance quatrième des k premiers entiers pairs successifs > 0 auxquels il ajoute chaque fois la fraction égale à un quart puis il calcule le produit N des nombres ainsi obtenus.
De la même manière, Puce établit la suite des nombres égaux à la puissance quatrième des k premiers entiers impairs successifs auxquels il ajoute chaque fois un quart et il calcule le produit D des nombres obtenus.
Alfred calcule pour tout k = 1,2,3.... la séquence des rapports r = N/D. Démontrer que r est toujours un entier et calculer k quand r est un carré parfait pour la quatrième fois dans la séquence.

Q4 - Passage en quatrième...
Alfred pose à ses deux amis les deux questions suivantes:
- à Puce : combien faut-il au minimum d’entiers pas nécessairement distincts pour exprimer l’entier 79 comme somme des puissances quatrièmes de ces entiers?
- à Zig : on écrit tout entier positif sous la forme de la somme des puissances quatrièmes de k entiers pas nécessairement distincts, k étant le plus petit possible. Démontrer que :
a) k ?53 (****)
b) k ? 21 (*****)
c) k ? 19 (******)



pdfJean Moreau de Saint-Martin,pdfDaniel Collignon,pdfPierre Henri Palmade,pdfPaul Voyer,pdfGilles Thomas,pdfJean-Marie Breton, pdfMaurice Bauval, pdfJean Nicot, pdfFrancesco Franzosi,pdfPatrick Gordon et pdfAntoine Verroken ont résolu le problème. En ce qui concerne les parties b et c de la question 4, les réponses proposées renvoient aux indications disponibles sur Internet, qui font appel à des méthodes analytiques raffinées.
On lira avec intérêt les deux documents suivants sur le problème de Waring pour les bicarrés:
Jean-Marc Deshouillers -  Problème de Waring pour les bicarrés : le point en 1984
François Dress - Problème de Waring pour les bicarrés : g(4) = 19
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional