Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A5936. Les triplets sympathiques de Saint Pierre Imprimer Envoyer
A5. Carrés, cubes, puissances d'ordre n

calculator_edit.png  

Au Paradis, Alice et Saint Pierre ont le dialogue suivant:
Alice: “Je viens de rencontrer trois belles âmes qui ont pour âges respectifs a,b et c années Les trois entiers (a,b,c) forment un triangle pythagoricien primitif. Pouvez-vous me donner ces trois entiers a,b et c?
Saint Pierre: “Depuis que j’ai les clés du Paradis, j’ai observé qu’il y a un grand nombre de triplets pythagoriciens primitifs que vous retrouverez sans peine sur la Toile”
Alice: “Si j’ajoute le même chiffre x devant chacun des trois nombres a, b et c, j’obtiens trois entiers qui forment à nouveau un triplet pythagoricien. Pouvez-vous me donner ces quatre entiers x,a,b et c?
Saint Pierre:”Je connais la réponse. Ce triplet (a,b,c) est sympathique car il est unique pour les habitants de la Terre.  
Cher lecteur,
Q1 Déterminez ce  triplet sympathique [**]
Q2 Prouver qu’il existe une infinite de triplets sympathiques dans les planètes où la vie est éternelle.[****]

pdfMarie-Nicole Gras,pdfDaniel Collignon,pdfElie Stinès et Bruno Langlois ont résolu tout au partie du problème.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional