Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
D1931. Trois jeux de perpendiculaires Imprimer Envoyer
D1.Géométrie plane : triangles et cercles
calculator_edit.png  

1er jeu
La droite qui relie l’orthocentre H d’un triangle ABC au milieu M du côté BC, coupe l'arc AB du cercle circonscrit au triangle ABC en un point P. Démontrer que les droites AP et PM sont perpendiculaires entre elles.
2ème jeu
O est le centre du cercle circonscrit au triangle isocèle ABC de sommet A et de base BC. D est le milieu de AB et E est le centre de gravité du triangle ACD. Démontrer que les droites OE et CD ssont perpendiculaires entre elles.
3ème jeu
Un cercle de centre P passant les sommets A et C d’un triangle ABC coupe le côté BA au point D et le côté BC au point E.Les cercles circonscrits aux triangles ABC et BDE se coupent en une deuxième point Q. Démontrer que les droites BP et PQ sont perpendiculaires entre elles.


 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional