Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
D1943. La symphonie de Ludwig (2ème mouvement) Imprimer Envoyer
D1.Géométrie plane : triangles et cercles
calculator_edit.png  

Problème proposé par Dominique Roux

Soient un triangle ABC et un cercle Γ de centre Ω distinct du cercle circonscrit à ABC.On trace les polaires de chaque sommet A,B et C par rapport au cercle Γ qui coupent respectivement (BC),(CA) et (AB) en U,V et W.
Q₁ Démontrer que les points U,V et W sont alignés.
Q₂ Dans le cas où le cercle Γ est le cercle circonscrit au triangle ABC,démontrer que les trois perpendiculaires en Ω à ΩA,ΩB et ΩC coupent respectivement (BC),(CA) et (AB) en trois points alignés et qu’il en est de même avec les médiatrices de ΩA,ΩB et ΩC ainsi qu’avec les tangentes en A,B et C au cercle Γ.



Pierre Henri Palmade,Maurice Bauval et Patrick Gordon ont résolu le problème.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional