Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
D1933. Les deux points remarquables Imprimer Envoyer
D1.Géométrie plane : triangles et cercles

calculator_edit.png  

P est un point fixe du plan. On donne trois nombres réels positifs a, b et c. Parmi les triangles ABC tels que PA = a, PB = b et PC = c, on détermine :
1) le triangle T1 dont le périmètre est le plus grand. P est un point remarquable du triangle. Lequel ?
2) le triangle T2 dont l’aire est la plus grande. P est un point remarquable du triangle. Lequel ?
Application numérique :  PA = 1, PB = rac2  et PC =  rac3 + 1. Calculer le périmètre de T1 et l’aire de T2 .

Les deux points remarquables sont respectivement le centre du cercle inscrit dans Q1 et l'orthocentre dans Q2.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional