Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problÚmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothÚque de problÚmes mathématiques avec les énoncés et les solutions classés par thÚmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problÚmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problÚmes sont identifiés par un niveau de difficulté :

TrĂšs facile

Facile

Moyen

Difficile

TrĂšs difficile

Variable

 

D'autre part, les problÚmes se traitent généralement à la main et sont alors repérés par l'icÎne

 

Pour faciliter leur rĂ©solution, l'ordinateur peut ĂȘtre utile. Dans ce cas, vous verrez apparaĂźtre aussi cette icĂŽne

 

Quand l'ordinateur est indispensable, l'icĂŽne figure seule.

 

Pour avoir accĂšs aux solutions de chaque problĂšme, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grùce au logiciel Declic.

Avertissement
Open/Close
D1972. Le rendez-vous d'Euler et de Feuerbach avec Poncelet Imprimer Envoyer
D1.Géométrie plane : triangles et cercles

calculator_edit.png  

La distance d qui sĂ©pare le centre O d’un cercle (Γ) de rayon R et le centre I d’un cercle (Îł)  de rayon r est telle que d2 = R(R – 2r).
Q₁ DĂ©montrer qu’on sait tracer une infinitĂ© de triangles ABC qui admettent (Γ) comme cercle circonscrit et (Îł)  comme cercle inscrit .
Q₂ Soit un triangle ABC admettant (Γ) comme cercle circonscrit et (Îł)  comme cercle inscrit. DĂ©terminer  le lieu du milieu du segment qui relie le centre du cercle d’Euler  au point de Feuerbach  quand A se dĂ©place sur la circonfĂ©rence de (Γ).



pdfPierre Henri Palmade,pdfClaudio Baiocchi,pdfPierre Leteurtre,pdfJean Nicot,pdfBernard Vignes et Maurice Bauval ont résolu le problÚme.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional