Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
D1812. Un point de rencontre |
D1.Géométrie plane : triangles et cercles |
Problème proposé par Dominique Roux
Dans un triangle ABC, on trace les médiatrices des trois côtés BC,CA et AB et on prend respectivement les trois points quelconques D,E,F sur ces médiatrices. Démontrer que les perpendiculaires à EF,FD et DE passant respectivement par A,B et C sont concourantes. Généralisation pour les plus courageux: démontrer que si les perpendiculaires menées des sommets d'un triangle ABC aux côtés correspondants d'un triangle A'B'C' sont concourantes, alors les perpendiculaires menées des sommets du triangle A'B'C' aux côtés correspondants de ABC sont concourantes. |