Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
D1891. La géométrie des couleurs (1er épisode) Imprimer Envoyer
D1.Géométrie plane : triangles et cercles

calculator_edit.png  

Q1 Tous les points du plan sont coloriés soit en bleu soit en rouge. Démontrer qu’on sait toujours trouver un triangle équilatéral dont les trois sommets sont de la même couleur.
Q2 Les sommets d’un triangle dont les angles sont distincts et ≠ 0 modulo 30° sont coloriés respectivement en bleu (A), en rouge (B) et en vert (C) dans le sens horaire sur le cercle circonscrit à ABC. A partir de deux points quelconques X et Y de couleurs différentes, un tour consiste à colorier de la troisième couleur le sommet Z d’un triangle équilatéral XYZ,l’ordre des couleurs sur le cercle circonscrit à XYZ étant le même que celui du triangle ABC.
Démontrer qu’après un certain nombre de tours les points d’une même couleur sont tous sur une même droite et que les trois droites qui portent les trois couleurs sont concourantes en un point que l’on tracera  à la règle et au compas.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional