Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
D357. Le dé du Roi de Silla |
D3. Cubes, parallélépipèdes, spheres |
Problème proposé par Pierre Henri Palmade
A l'occasion de fouilles réalisées en 1975 à Gyeongju en Corée du Sud, les archéologues ont découvert un dé à 14 faces appelé "juryeonggu" qui datait de l'époque du roi de Silla au 7ème siècle après J.C. Ce dé comporte deux motifs : un carré reproduit sur six faces et un hexagone qui apparaît à l'identique sur huit faces. Par convention, le côté de chaque carré est égal à l'unité et les longueurs distinctes des côtés de chaque hexagone sont 1 et a. Q1 Etablir le patron de ce dé. Q2 Montrer que ce dé peut être obtenu par troncature d'un polyèdre régulier dont on donnera les dimensions en fonction de a. Q3 Calculer la valeur de a de sorte que les aires des 14 faces soient identiques (juryeonggu traditionnel). Q4 Pour les plus courageux: on admet qu'après avoir lancé le dé, la probabilité pour qu'il tombe sur l'une quelconque de ses faces est proportionnelle à l'angle solide sous-tendu par cette face. Peut-on dire qu’avec le juryeonggu traditionnel la probabilité d'apparition de l'une quelconque des faces visible est toujours égale à 1/14? |