Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
J129. Sommes contraires |
J. Jeux de plateaux |
On considère une grille carrée de dimension n ≥ 4 qui contient n² cases. Dans chacune d’elles on écrit un entier de sorte que la somme de tous les entiers de la grille est positive et la somme des entiers contenus dans n’importe quel carré 3 x 3 est négative.
Déterminez les valeurs de n pour lesquelles on sait remplir la grille. Justifiez votre réponse. Application numérique : quand elles existent, donner des exemples de grilles pour 4≤ n ≤ 10. Zig dispose d’une calculette de marque déposée @Méphisto dont le clavier comporte trois touches qui permettent d’obtenir à partir d’un entier quelconque n strictement positif affiché à l’écran :
1) φ(n), fonction d’Euler, le nombre d’entiers qui sont strictement inférieurs à l’entier n et sont premiers avec lui. 2) σ(n) la somme des diviseurs de l’entier n, y compris 1 et lui-même. 3) τ(n) le nombre des diviseurs de l’entier n, y compris 1 et lui-même. Q₁ Démontrer qu’il existe une infinité d’entiers n strictement positifs tels que l’entier n égalise son sigma (σ) diminué de son phi (φ) et de son tau(τ). Q₂ Démontrer qu’il existe au moins un entier n strictement positif tel que son double égalise son sigma (σ) augmenté de son phi(φ) et diminué de son tau(τ). Q₃ Démontrer qu’il existe une infinité de paires d’entiers strictement positifs (m,n) tels que le rapport des deux entiers est l’inverse du rapport de leur sigma (σ). Q₄ Soit un entier k ≥ 1. Démontrer que l’équation σ(n) = n + k a un nombre fini de solutions. Application numérique : déterminer le plus grand entier n₀ tel que σ(n₀) = n₀ + 2021. Démontrer qu’il existe un entier n₁ > n₀ tel que φ(n₁) = n₁ – 2021 |