Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Â
Â
Â
Â
Â
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
E122. Des tas de sable primophiles |
E1. Suites logiques |
Des tas de sable sont alignés les uns à la suite des autres et portent les numéros 1,2,3,....,n,.... Le premier tas est vide,le second contient deux grains de sable et le troisième en contient trois. A partir du quatrième tas, le nombre de grains de sable du kième tas est égal à la somme du nombre de grains de sable de l’anté-antépénultième tas (n° = k – 3) et du nombre de grains de sable de l’antépénultième tas (n° = k – 2). Démontrer que pour tout tas dont le numéro est un nombre premier p, le nombre de grains de sable est un multiple de p.
Question subsidiaire : est-il vrai que lorsque le numéro d’un tas est un nombre composé m quelconque, le nombre de grains de sable de ce tas n’est jamais un multiple de m ? |