Tous les problèmes sont identifiés par un niveau de difficulté :
Très facile
Facile
Moyen
Difficile
Très difficile
Variable
Les figures et les graphes ont été réalisés grâce au logiciel Declic.
E596. Les trains qui se croisent |
E5. Enigmes logiques |
Problème proposé par Bernard Vignes
Le train venant d’Aumale (A) et celui venant de Blangy-sur-Bresle (B) circulent dans des directions opposées sur une voie unique. Les deux trains qui sont constitués l’un et l’autre d’une motrice et de neuf voitures, ont les caractéristiques suivantes : - tous les véhicules (motrices et voitures) ont la même longueur, - lorsque les trains sont à l’arrêt, deux véhicules voisins peuvent être accrochés l’un à l’autre ou décrochés. - chaque motrice est capable de tirer ou de pousser dans un sens comme dans l’autre tout ou partie des deux convois. Une voie d’évitement a été installée pour permettre aux trains de se croiser mais elle ne peut accueillir que trois véhicules (motrices et/ou voitures) en même temps. Q1 Prouver que les deux trains peuvent se croiser. Q2 Lorsque la motrice de (A) ou celle de (B) opère dans un sens (en marche avant ou en marche arrière), la durée de chaque manœuvre qu’elle effectue est de trois minutes. Le temps passé à accrocher ou décrocher deux véhicules ou plus est d’une minute et s’ajoute au temps passé pour les manœuvres des motrices. Déterminer le temps minimal de croisement des deux trains. Q3 On suppose que le train (A) a m voitures et le train (B) a n voitures, m et n > 1. Quel est le nombre minimum de places que doit comporter la voie d’évitement pour que les deux trains puissent se croiser. |