Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
E6901. Inégalités triangulaires Imprimer Envoyer
E6. Autres casse-tête

calculator_edit.png  

Problème proposé par Pierre Jullien

Soit un triangle ABC dont les dimensions des côtés AB = c, AC = b et BC = a sont classées dans l'ordre croissant: c ≤ b ≤ a avec a < b + c.
L'indice d'inégalité I de ce triangle est le plus petit des deux rapports b/c et a/b: I = min{b/c, a/b}.
Plus I est petit et proche de 1, plus le triangle se rapproche d'un triangle isocèle avec au moins deux côtés de dimensions très proches. A l'inverse, plus I est grand, plus le triangle peut être considéré comme "inégal", en d'autres termes le "moins isocèle possible".
Q1 Déterminer la valeur plafond de I.
Q2 Construire le triangle le plus inégal possible tel que le plus grand côté BC est égal à 10 cm et la hauteur issue de A est égale à 1 cm.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional