Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
E633. A la manière des joueurs de poker Imprimer Envoyer
E6. Autres casse-tête
calculator_edit.png  

Ce problème est proposé par Mario Donsimoni et Denis Chevalier qui ont eu l’occasion d’admirer la dextérité avec laquelle les joueurs de poker manipulent les piles de jetons…

Au départ , vous disposez de deux piles de n jetons, l’une à votre gauche constituée de n jetons blancs, l’autre à votre droite de n jetons noirs.
Vous effectuez les opérations suivantes :
1)    vous intercalez les deux piles pour obtenir une pile de 2n jetons avec en alternance un jeton de la pile de gauche, un jeton de la pile de droite , un jeton de la pile de gauche, un jeton de la pile de droite …les jetons étant toujours pris par le bas de chacune des deux piles.
2)    vous dissociez cette pile en deux nouvelles piles de n jetons, la pile inférieure que vous placez à votre gauche et la pile supérieure que vous placez à votre droite.
3)    vous recommencez les opérations 1) et 2) autant de fois que nécessaire jusqu’à obtenir à nouveau deux piles homogènes de même couleur.
Déterminez la fonction f(n) qui donne pour tout n entier > 1 le nombre de tours nécessaires à l’obtention de deux piles homogènes.
A titre indicatif :
-    pour n = 2, on a f(2) = 2  avec les piles suivantes :


-    pour n = 3, on a f(3) = 4 avec les piles suivantes :


Que devient f(n) si:
-    dans l’opération 1) vous mettez en alternance un jeton de la pile de droite puis un jeton de la pile de gauche…. et l’opération 2) reste inchangée ?
-    dans l’opération 2) vous placez la pile inférieure à votre droite et la pile supérieure à votre gauche et l’opération 1) reste inchangée ?



 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional