Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
E6948. Switch them (3ème épisode) Imprimer Envoyer
E6. Autres casse-tête

calculator_edit.png  

Problème proposé par Raphaël Nanchen
On donne une grille de départ 3 x 3, composées de 9 cases blanches.
Chaque fois qu’on clique sur une case, la couleur de la case change, ainsi que la couleur de celles qui ont un côté commun avec la case cliquée.
Le changement de couleurs suit l’ordre donné sous la grille : blanc, rouge, bleu, vert, violet, jaune, noir.
 
Q1 Montrer qu’il est impossible d’obtenir 9 cases noires

Q2 A partir d’une grille entièrement noire, on peut changer la couleur d’une seule case. Comment doit-on s’y prendre pour obtenir la grille du problème E6946 ?
 
Donner toutes les possibilités en précisant la case et la couleur choisie


pdfDaniel Collignon,pdfPierre Henri Palmade et pdfJean-Louis Margot ont résolu le problème.
Les solutions des trois épisodes sont données dans un même document par pdfRaphaël Nanchen.

 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional